

Abrasion Resistance of 304L and 316L Stainless Steel Subjected to Deep Cryogenic Treatment

Paulo Herrera Dr. Tom Slatter Dr. Rob Thornton

Contents

- Introduction
 - Cryogenic Treatment
 - Abrasive Wear Test
- Aim and Objectives
- Methodology
- Results
- Conclusions so far
- Future work

- Benefits from temperature below 193 K (-80 °C or -112 °F)
- Used along conventional heat treatment
- Relatively recent first half of the 20th century

• Typical stages: cooling, soaking and heating

Reported benefits

- Presents good dimensional stability
- Can improve mechanical properties
- Common changes mechanisms in steel alloys:
 - Transformation of retained austenite in martensite
 - Precipitation and distribution of Nano-carbides
 - Increase in dislocation and twins
- Some industrial use, particularly in tooling
 - E.g. improving abrasive wear resistance with minimal change to finished product

Limitations

- Long processing time (hours) and hardware requirements limiting for some applications
- Some of 'classic' literature is lacking in explanation for observed reported results
- Industrial interest in process means that bulk of research is on tool steels

Abrasive wear

- Wear is a life limiting factor
- Most common cause of mechanical failure
- 50% of all wear in industry is due to abrasive wear
- Complex mechanism
- High influence of environmental parameters

Abrasive wear testing

- Specific test rigs for each application
- Comparable tests
- Dry-sand/Rubber-wheel abrasive test:
 - ASTM G65
 - Commonly used in industry
 - Ease of use
 - Low-stress three-body abrasion test
- Some limitations e.g. designated sand and wheels difficult to obtain

ASTM-G65 Nozzle Load Sample Rubber-wheel Dry-Sand

Aim of this research

• To analyse the effect of the deep cryogenic treatment on alloys used in engineering applications.

Objectives

- 1. Investigate the effect of the commercial cryogenic treatment on the mechanical performance (Vickers hardness, abrasive wear resistance, microstructural change) of industrially relevant steel alloys
- 2. Investigate the effect of a cryogenic treatment with modified parameters (time, temperature) on selected samples
- 3. Propose an optimise cryogenic treatment process for the studied alloys

Material

- Austenitic Stainless Steel:
 - AISI 304L
 - AISI 316L

Heat Treatment:

- Subjected to a stress relieving heat treatment at 1228 K (955 °C or 1750°F) for 30 minutes, air cooled to room temperature
- Deep cryogenic treatment (DCT):
 - 93 K (-180 °C or -292 °F) for a period of 14 hours, with cooling and heating rate of ~2 K/min (2 °C/min or 3.6 °F/min)

Component	304L	316L
	Wt.%	Wt.%
С	0.03	0.03
Cr	18 - 20	16 - 18
Mn	2	2
Ni	08 - 12	10 - 14
Р	0.045	0.045
S	0.03	0.03
Si	1	0.75
Мо		2 - 3

Samples

- ASTM G65 samples:
 - 1. Samples from commercial alloy
 - 2. Heat treatment
 - 3. Final polish
 - Tests:
 - 1. Surface characterization
 - 2. Abrasive wear test
 - 3. Advanced microscopy
 - 4. Metallography

Dry-Sand/Rubber-Wheel

DSRW Test Rig

DSRW Test Rig

- ASTM G65 standard dimensions
- Designed for a smaller form factor
- Possibility of using non-standard samples
- Customizable test
 parameters

Results - Hardness

 167.12 ± 1.06

- Repeated 30 times for each condition
- Standard error < 1%
- AISI 316L did not present a difference
- AISI 304L Cryogenically treated presented a hardness 1.4% higher (Confidence interval >99%)

AISI 304L

AISI 316L

 167.52 ± 1.19

Results - Wear

Cryogenic

Results - Wear

Results – Wear AISI 304L

- Repeated 4 times for each condition
- Standard error < 6%
- AISI 304L presented different wear scars for each condition (as showed)
- AISI 304L Cryogenically treated presented volume loss 26.1% smaller (Confidence interval >99%)

Results – Wear AISI 316L

- Repeated 5 times for each condition
- Standard error < 2%
- AISI 316L did not present a difference
- The improvement of 0.5% is no relevant (Confidence interval ~17%)

Cryogenic

 8.57 ± 0.17

0.5%

Conclusions so far

- There were no measurable differences in the results found for the 316L samples
- 304L presented an increase of 1.4% in hardness and 26.1% in wear resistance when submitted to the DCT
- The changes present in the 304L are possibly due to strain induced martensite in the structure
- More tests are needed

Future work

- Abrasive test repeats
- Samples analyses:
 - Metallography
 - Advanced microscopy
 - Wear scar analyses
 - XRD

The University Of Sheffield.

Thank You

